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1 Introduction and Result.

Already B. Riemann described a general procedure how to construct sim-
ply connected minimal surfaces bounded by straight line segments, finite or
infinite [13]. As special cases he considered the following boundary configu-
rations: (i) two half lines with a common endpoint together with a full line
parallel to the plane of the two half lines, (ii) three pairwise skew lines. Later
E. Neovius observed that the above configuration (i) may also be spanned
by doubly connected minimal surfaces and he extended Riemann’s method
correspondingly [11]. These authors gave the solution in terms of integrals
depending on certain parameters which had to be chosen in order to satisfy
the given boundary condition. The question of which boundary configura-
tions can actually be realized in this way was left open, apart from some
special cases. In recent years the problem of minimal surfaces spanning un-
bounded piecewise linear contours gained new interest leading to existence,
uniqueness, and multiplicity results for some special families of such contours
[4,8,9].

Analogous to the classical Plateau problem [2, Chpt. 4.3] it seems natural
to pose the problem of the existence of minimal surfaces spanning general
unbounded curves. In this paper we solve this problem in the case of simply
connected surfaces and connected boundaries from a suitably restricted class.
This class contains all properly embedded curves consisting of finitely many
polynomial pieces. The case of minimal graphs with boundary data ±∞
was investigated in [7]. The leading idea in our approach is to work in
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the class of minimal surfaces with quadratic area growth; that is to say
that the area of such minimal surfaces inside a ball of radius r grows no
faster than const r2. Our conditions on the admissible contours are tailored
correspondingly. Therefore, if the boundary is a straight line, the methods
of this paper produce a half plane as solution. The half helicoid, having the
same boundary, is out of reach of our technique.

We use the following notations:

Br(p) := {x ∈ R3| |x− p| < r}, r > 0, p ∈ R3,

Br := Br(0),

Dr(w) := {z ∈ R2| |z − w| < r}, r > 0, w ∈ R2

Dr := Dr(0),

H := {z = (u, v) ∈ R2| v > 0} .

We now list our conditions on the admissible contours. Let Γ be a noncom-
pact, properly embedded curve in R3, piecewise of class C1,α for some α > 0.
We assume that 0 ∈ Γ and for R > 0 we denote by ΓR the connected com-
ponent of Γ ∩ BR containing 0. In slight abuse of notation we also use the
symbol Γ for the arc-length representation Γ : R → R3, normalized by the
condition Γ(0) = 0. We require furthermore:

(1.1) there is δ > 0 such that |p − q| ≥ δ for all points p, q in different
components of Γ\Γ1,

(1.2) setting γ(s) = |Γ(s)|−1Γ(s) there holds

(i) |〈γ(s), Γ′(s)〉| → 1 (|s| → +∞)

and

(ii)
∫

Γ\Γ1

|Γ(s)|−1
√

1− 〈γ(s), Γ′(s)〉2 ds < +∞ .

Roughly speaking, the condition (1.2) requires the curve Γ to tend to infinity
in a sufficiently straight manner. Actually, (1.2) does imply that the tangent
vector has limits at the ends of Γ, but (1.2) does not imply that the ends stay
within bounded distance to some straight lines; for example, all polynominal
ends satisfy (1.2). The condition (1.2) (ii) expresses the fact that the cone
over Γ has quadratic area growth.

We shall prove the following
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Theorem 1.1 Let Γ be a properly embedded curve in R3, piecewise of class
C1,α and let (1.1)and (1.2) be satisfied. Then there exists a proper map
X ∈ C0(H̄,R3) ∩C∞(H,R3) which is a harmonic and conformal immersion
on H and X|∂H parametrizes Γ in a strictly monotonic way.

Remark 1.2 The results of Meeks-Yau [10] imply that X is an embedding
provided that Γ is contained in the boundary of a mean-convex set.

Remark 1.3 Our proof gives the corresponding result for the ambient space
Rn, n ≥ 4, with the exception that X may have isolated branch point singu-
larities.

Remark 1.4 If Γ has finite total curvature, so does X.

In the last section of the paper we shall investigate the asymptotical shape
of the surfaces obtained in Theorem 1.1.

2 The proof.

Lemma 2.1 There are numbers ρ0 > 0, C > 0 with the following properties :

(i) |Γ(s)| is strictly increasing for s ≥ ρ0 and strictly decreasing for s ≤
−ρ0,

(ii) lim
s→±∞

|Γ(s)|/|s| = 1 and |Γ(s)| ≥ C−1|s| for |s| ≥ 1,

(iii) length (Γ ∩BR) ≤ 2C R and length (Γ ∩BR)/R → 2 (R → +∞),

(iv) Γ ∩BR is connected for R ≥ ρ0,

(v) the following limits exist:

γ+ := lim
s→+∞

γ(s), γ− := lim
s→−∞

γ(s).

Proof. We have
d

ds
|Γ(s)| = 〈γ(s), Γ′(s)〉

and it follows therefore from (1.2) that 〈γ(s), Γ′(s)〉 → 1(s → +∞), 〈γ(s), Γ′(s)〉
→ −1(s → −∞), proving (i). The rule of de l’Hôpital implies |Γ(s)|/|s| →
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1(s → ±∞) and since Γ(0) = 0 and Γ is embedded the existence of a constant
C such that |Γ(s)| ≥ C−1|s| follows. The first inequality in (iii) is a direct
consequence of (ii). With Γ∩BR = Γ([s−R, s+

R]) we have R−1 length (Γ∩BR) =
R−1(s+

R − s−R) = s+
R/|Γ(s+

R)| − s−R/|Γ(s−R)| = 2 by (ii). Assertion (iv) follows
immediately from (i). To prove (v) compute

d

ds
γ(s) = |Γ(s)|−1 (Γ′(s)− 〈γ(s), Γ′(s)〉γ(s))

and

| d

ds
γ(s)| = |Γ(s)|−1

√
1− 〈γ(s), Γ′(s)〉2 .

Therefore, by assumption (1.2) γ′ is integrable and (v) follows. 2

The existence of a solution to the Plateau problem with the infinite
boundary curve Γ as described in Theorem 1.1 will be demonstrated by
approximation with a sequence of compact minimal surfaces which are ob-
tained as solutions to the classical Plateau problem with boundary curves
ΓR ∪ βR, R ≥ 1, where βR is part of a great circle on the sphere ∂BR join-
ing the endpoints Γ(s−(R)), Γ(s+(R)) of ΓR, s−(R) < 0 < s+(R). Clearly,
if R → +∞, then ΓR converges to Γ and βR disappears at infinity. The
Douglas-Radò existence theorem [ 2 ] guarantees the existence of disc type
minimal surfaces spanning ΓR ∪ βR; more precisely, there exist mappings
XR ∈ C0(H̄ |R3) ∩ C∞(H,R3) with the following properties

(2.1) XR is harmonic and conformal on H,

(2.2) XR maps ∂H ∪∞ topologically onto ΓR ∪ βR,

(2.3) XR minimizes simultaneously area and Dirichlet energy among all maps
Y ∈ C0(H̄ ∪∞, R3) which fulfil the boundary condition (2.2).

As a normalization condition we may furthermore require that

(2.4) XR(−1) = Γ(s−(1)), XR(0) = Γ(0) = 0, XR(1) = Γ(s+(1)) .

An important remark must be made on the geometric regularity of the
surfaces XR: whereas the classical Douglas-Radò theorem leaves the possibil-
ity of branch-point singularities open, it was much later shown through the
work of Ossermann [12], Gulliver [ 6 ], and Alt [ 1 ], that minimizing surfaces
like the XR are actually immersed in the interior.
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In the following we denote by A(M) the area of a surface M and by

E(X, Ω) :=
1

2

∫

Ω

(|Xu|2 + |Xv|
)
dudv

the Dirichlet energy of a mapping X : Ω → R3.

We start our computation with an estimate of the area of XR which we
obtain by comparison with the cone CR over ΓR ∪ βR with vertex at the
origin, assuming that βR is a shortest connection of the endpoints of ΓR on
∂BR. With

α(R) := ^(γ(s−(R)), γ(s+(R)) ∈ (0, π]

we obtain

(2.5) A(CR) =

(
1

2
α(R) + ε(R)

)
R2,

where

ε(R) =
1

2
R−2

s+(R)∫

s−(R)

|Γ(s)|
√

1− 〈γ(s), Γ′(s)〉2 ds

≤ 1

2R

s+(R)∫

s−(R)

s

R

√
1− 〈γ(s), Γ′(s)〉2 ds

→ 0(R → +∞)

since |s±(R)| ≤ CR by Lemma 2.1 (ii) and |〈γ(s), Γ(s)〉| → 1 (|s| → +∞)
by hypothesis (1.2) (i). Consequently we have

(2.6) A(XR) ≤
(

1

2
α(R) + ε(R)

)
R2

where α(R) → α := ^(γ−, γ+) and ε(R) → 0 for R → +∞ (cf. Lemma 2.1
(v)).

Next we employ the monotonicity formula to derive local (in space) area
bounds from (2.6) which are uniform with respect to R.
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Lemma 2.2 The surface MR := XR(H) fulfills the estimate

(2.7)

1
r2 A(MR ∩Br) ≤ 1

2
α(R) + ε(R)

+
∫

Γ∩BR

√
1− 〈γ(s), Γ′(s)〉2
max(r, |Γ(s)|) ds, 0 < r ≤ R .

Proof. The monotonicity formula [3,15] yields

(2.8)
∂

∂ρ

(
1

ρ2
A(MR ∩Bρ)

)
≥ − 1

ρ3

∫

Γ∩Bρ

〈x, ν〉ds

for 0 < ρ < R, where x is the position vector and ν the outward pointing
unit normal vector in the surface MR. Since we assume Γ to be piecewise
of class C1,α, α > 0, the boundary regularity theorem for minimal surfaces
[2, Chpt. 7.3] justifies the applicability of the divergence theorem, yielding
(2.8). With V (x) := |x|−1x we obtain

∣∣∣
∫

Γ∩Bρ

〈x, ν〉 ds
∣∣∣ =

∣∣∣
∫

Γ∩Bρ

|x|〈V (x)− 〈V (x), Γ′〉Γ′, ν〉 ds
∣∣∣

≤ ρ

∫

Γ∩Bρ

|V − 〈V, Γ′〉Γ′|ds = ρ

∫

Γ∩Bρ

√
1− 〈V, Γ′〉2 ds .

Combining this with (2.8) we get upon integration

1

R2
A(MR)− 1

r2
A(MR ∩Br) ≥ −

R∫

r

1

ρ2

∫

Γ∩Bρ

√
1− 〈V, Γ′〉2 ds dρ

= −
∫

Γ∩BR

√
1− 〈V, Γ′〉2

R∫

max(r,|x|)

dρ

ρ2
ds

≥ −
∫

Γ∩BR

√
1− 〈V, Γ′〉2

max(r, |x|) ds .

Taking (2.6) into account we obtain the statement of the lemma. 2
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An immediate consequence of Lemma 2.2 and our hypothesis (1.2) (ii) is

Corollary 2.3 There is a constant a, only depending on Γ, such that

A(MR ∩Br) ≤ ar2, 1 ≤ r ≤ R .

Like in [16] the local area estimates in space can be converted into local
energy estimates for the parametrization XR. For this purpose we define

Ω(Y, ρ) := (Y )−1(Bρ) ,

C(Y, ρ) := the connected component of Ω(Y, ρ) containing [−1, 1] ,

whenever Y : H̄ → R3 is a continuous map. We remark that [−1, 1] ⊂
Ω(XR, ρ) for ρ ∈ [1, R] since XR([−1, 1]) = Γ1 ⊂ B1 because of (2.4).

By a rescaling we may assume that the number ρ0 in Lemma 2.1 is 1, i.e.
s 7→ |Γ(s)| is monotone for |s| ≥ 1.

Lemma 2.4

(i) dist(∂C(XR, ρ)\R, ∂C(XR, 2ρ)\R) ≥ exp (−16πa), 1 ≤ ρ ≤ R/2,

(ii) dist(0, ∂C(XR, ρ)\R) ≥ c ln ρ, 2 ≤ ρ ≤ R.

Here a is the constant from Lemma 2.3, ∂H is identified with R, and
c > 0 is some further constant.

Proof.

(i) We choose points z ∈ ∂C(XR, ρ)\R and w ∈ ∂C(XR, 2ρ)\R such that
|z − w| = dist(∂C(XR, ρ)\R, ∂C(XR, 2ρ)\R) =: δ0. We may assume that
δ0 < 1. Let r ∈ (δ0, 1).

Claim I : ∂Dr(z) ∩ C(XR, ρ) 6= ∅. This is obvious if ∂Dr(z) meets [−1, 1]. If
this is not the case then [−1, 1] lies in the exterior of Dr(z) since [−1, 1] ⊂
Dr(z) is impossible because of r < 1. If then ∂Dr(z)∩C(XR, ρ) were empty, it
would follow that ∂Dr(z) separates z ∈ C(XR, ρ) from [−1, 1], contradicting
the definition of C(XR, ρ).

Claim II : There exists ζ ∈ ∂Dr(z) such that |XR(ζ)| ≥ 2ρ. Since w ∈ Dr(z)
and |XR(w)| = 2ρ, it follows from the maximum principle that there must
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be a point ζ0 ∈ ∂(Dr(z)∩H) such that |XR(ζ0)| ≥ 2ρ. In case that ζ0 ∈ ∂H
we may use the monotonicity of s 7→ |Γ(s)| for |s| ≥ 1 and the assumption
ρ ≥ 1 to infer the existence of ζ1 ∈ ∂Dr(z) ∩ ∂H such that |XR(ζ1)| ≥ 2ρ.

Claim I and II being proved we infer the existence of a subarc σr of ∂Dr(z)
which connects C(XR, ρ) with ∂C(XR, 2ρ)\R within C(XR, 2ρ).

According to the Lemma of Courant-Lebesgue [2, Chpt. 4.3] we may choose
r ∈ (δ0,

√
δ0) in such a way that the following inequalities hold:

ρ2 ≤



∫

σr

∣∣∣∣
∂XR

∂θ

∣∣∣∣ dθ




2

≤ 4π

− ln δ0

E(XR, Ω(XR, 2ρ)) ≤ 16πa

− ln δ0

ρ2 ,

using Corollary 2.3 in the last step. This is statement (i).

(ii) We start with ρ = 2. Assuming that δ0 := dist (0, ∂C(xR, 2)\R) < 1 we
again find by means of the Courant-Lebesgue lemma a radius r ∈ (δ0,

√
δ0 )

such that a subarc σr of ∂Dr(0) ∩C(XR, 2) joins [−1, 1] with ∂C(XR, 2)\R.
Since XR([−1, 1]) ⊂ B1 we conclude

1 ≤



∫

σr

∣∣∣∣
∂XR

∂θ

∣∣∣∣ dθ




2

≤ 4π

− ln δ0

E(XR, C(XR, 2)) ≤ 16πa

− ln δ0

,

and hence
dist(0, ∂C(XR, 2)\R) ≥exp(−16πa) .

With the help of (i) we then conclude inductively

dist(0, ∂C(XR, 2k+1)\R) ≥ k exp(−16πa)

for all k ∈ N with 2k+1 ≤ R. From this the statement (ii) follows. 2

Combining Corollary 2.3 and Lemma 2.4 we obtain

Corollary 2.5

|XR| ≤ er/c on Dr(0)∩H̄ and E(XR, Dr(0)∩H) ≤ a e2r/c for r ∈ [c ln 2, c ln R].

We are now ready to pass to the limit R → +∞.
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Proposition 2.6

(i) There are sequences Rk → +∞(k →∞) such that the maps XRk converge
locally uniformly on H̄ to a map X ∈ C0(H̄,R3) ∩ C∞(H,R3) for k → ∞.
The map X is harmonic on H and X maps ∂H strictly monotonically into
Γ.

(ii) Any such limit map is a conformal immersion of H into R3.

Proof.

(i) Let r > 0 be fixed. Since XR(∂H) = ΓR ∪ βR, it follows from Corol-
lary 2.4 that XR(∂H ∩Dr(0)) ⊂ Γ for R > er/c. Then, using a well known
argument from the proof of the Douglas-Radò theorem (cf. [2, Chpt. 4.3])
involving the Courant-Lebesgue Lemma and the monotonicity of the bound-
ary maps XR : ∂H ∩ Dr(0) → Γ, R > er/c, it follows on the basis of the
local estimates in Corollary 2.5 that the boundary values XR|∂H ∩ Dr(0)
are equibounded and equicontinuous. Since r > 0 is arbitrary we may
then apply standard compactness theorems for harmonic functions to ob-
tain the existence of a limit map X ∈ C0(H̄,R3) ∩ C∞(H,R3) which is
harmonic, maps ∂H into Γ weakly monotonically, and satisfies the confor-
mality relations |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 . Then, by another well know
argument from the proof of the Douglas-Radò theorem, it follows that X
cannot be constant on any interval of ∂H unless X is constant globally.
But since X([−1, 1]) = Γ1, X is not constant and hence the boundary map
X : ∂H → Γ is strictly monotonic.

(ii) As shown in (i), X is at least a branched immersion, implying that the
points in H where X fails to be immersed are isolated. Then, in view of
the stability of the minimal immersion XR the estimates of Schoen [14] for
the induced metrics of the surfaces XR become applicable and show that the
limit X must again be immersed on H. 2

It remains to prove the properness of the limit maps X.

Lemma 2.7 Let X be a limit surface as in Proposition 2.6. Then one has
the estimate

E(X, Ω(X, ρ)) ≤

1

2
α +

∫

Γ

√
1− 〈γ(s), Γ′(s)〉2
max(ρ, |Γ(s)|) ds


 ρ2
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with α := ^ (γ−, γ+) .

Proof. Let X = lim
k→∞

XRk , let C be any compact subset of Ω(X, ρ) and

let ε > 0. It follows from the local uniform convergence of (XRk) that
C ⊂ Ω(XRk , ρ + ε) for sufficiently large k and hence, by Lemma 2.2

E(XRk , C) ≤


1

2
α(Rk) + ε(Rk) +

∫

Γ∩BRk

√
1− 〈γ(s), Γ′(s)〉2

max(ρ + ε, |Γ(s)|) ds


 (ρ + ε)2 .

It follows from Lemma 2.1 (v) that α(Rk) → α(k →∞) and, as shown after
(2.5) above, ε(Rk) → 0 (k →∞), which proves the lemma. 2

Lemma 2.8 Every component of Ω(X, ρ), ρ ≥ 1, is bounded.

Proof. Let us first show that X is unbounded, i.e. Ω(X, ρ) 6= H̄ for any ρ.
Assuming the contrary, it follows from Lemma 2.6 that E(X, H) < +∞ and
we may apply the lemma of Courant-Lebesgue to obtain

(2.9) (|X(r)−X(−r)|2 ≤
(∫ +π

−π

∣∣∣∣
∂X

∂θ
(r eiθ)

∣∣∣∣ dθ

)2

≤ 2π

ln r
E(X,H)

for arbitrary large radii r. Since X([−1, 1]) = Γ1 and X : ∂H → Γ is strictly
monotonic, the points X(r) and X(−r) are contained in different components
of Γ\Γ1 if r > 1. Therefore (2.8) contradicts the hypothesis (1.1) if r is large
enough.

Let us now assume that Ω0 is an unbounded component of Ω(X, ρ) for
some ρ ≥ 1, let ρ′ > ρ and let Ω′ be the component of Ω(X, ρ′) which contains
Ω0. Then Ω′ is unbounded, too. For any sufficiently large r > 1 the lemma
of Courant-Lebesgue provides s ∈ (r, r2) such that

(2.10) length X(Ω′ ∩ ∂Ds) ≤
(

2π

ln r
E(X, Ω′)

)1/2

<
1

2
( ρ′ − ρ) .

If, for such s, we had H ∩ ∂D ⊂ Ω′, then we would, for sufficiently large r,
obtain the same contradiction to (1.1) as in the first part of the proof. Since
Ω′ is unbounded and connected, Ω′ ∩ ∂Ds cannot be empty provided that
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s is large enough and we may therefore conclude that H ∩ ∂Ds ∩ ∂Ω′ 6= ∅
for s from (2.10). Since |X| = ρ′ on ∂Ω′ ∩ H it follows then from (2.10)
that |X| > ρ on Ω′ ∩ ∂Ds. For large enough r we may clearly assume that
Ω0∩Ds 6= ∅ and it follows then that Ω0 ⊂ Ω′∩Ds since otherwise ∂Ds would
separate Ω0 within Ω′. We thus showed that Ω0 is bounded, a contradiction.

2

Lemma 2.9 X is proper.

Proof. We must show that Ω(X, ρ) is bounded for all large ρ. We consider
ρ ≥ ρ0, where ρ0 is given by Lemma 2.1. Let us recall that C(X, ρ) is
the connected component of Ω(X, ρ) which contains [−1, 1] and that Γρ =
Γ ∩ Bρ for ρ ≥ ρ0. Therefore, X : ∂H → Γ being monotonic, it follows that
Ω(X, ρ) ∩ ∂H ⊂ C(X, ρ) for ρ ≥ ρ0. Thus there is only one component of
Ω(X, ρ) which has nonempty intersection with ∂H, namely C(X, ρ). Let us
now consider a component Ω0 of Ω(X, ρ) which is different from C(X, ρ) and
wich contains some point w with |X(w)| ≤ ρ/2. Then X(Ω0) ∩ Bρ/2(X(w))
is a minimal surface which passes through X(w) and has no boundary in the
ball Bρ/2(X(w)) and hence

A(X(Ω0)) ≥ π(ρ/2)2 ,

by the monotonicity formula. In view of Lemma 2.7 only finitely many
such components Ω0 can therefore exist, say Ω1, . . . , Ω`. On the complement
of C(X, ρ) ∪ Ω1 ∪ · · · ∪ Ω` we have the inequality |X| > ρ/2 and hence
Ω(X, ρ/2) ⊂ C(X, ρ)∪Ω1∪· · ·∪Ω` and thus Ω(X, ρ/2) is bounded as follows
from Lemma 2.8. 2

Proof of Theorem 1.1. The theorem is a direct consequence of Proposition
2.6 and Lemma 2.9. As to Remark 1.1, the results of Meeks-Yau [10] apply
directly to the surfaces XR, showing that they are embeddings. The limit
surface X is then embedded, too [6]. If Γ has finite total curvature, then
the total curvature of the approximating curves ΓR ∪ βR remains uniformly
bounded implying that the total curvature of the surfaces XR remains uni-
formly bounded, by virtue of the Gauss-Bonnet theorem. Passage to the
limit proves Remark 1.4. 2
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3 The asymptotical behavior

In this last section we describe the behavior at infinity of the surfaces con-
structed in section 2 by investigating their blow down limit lim

ρ→+∞
1
ρ
X(H).

The corresponding boundary curves are the curves Γρ, given in arc-length
parametrization by

Γρ(s) =
1

ρ
Γ(ρs) .

In order to obtain convergence of the surfaces 1
ρ
X(H) in the sense of map-

pings, we must reparametrize these surfaces appropriately what we do by
choosing a conformal automorphism ϕρ of the upper half plane H such that

ϕρ(0) = 0, ϕρ(−1) = s−(ρ), ϕρ(1) = s+(ρ)

where Γ(s±(ρ)) are the endpoints of Γ ∩Bρ. Then we define

Y ρ :=
1

ρ
X ◦ ϕρ, ρ ≥ 1 ,

so that Y ρ(0) = 0 and Y ρ(±1) are the endpoints of Γρ ∩B1 .

Let us at first compute the limit of the curves Γρ, keeping in mind the
statements in Lemma 2.1.

Lemma 3.1 lim
ρ→+∞

Γρ = Γ∞ uniformly on any compact arc-length interval

where

Γ∞(s) :=

{
sγ−, −∞ < s ≤ 0
sγ+, 0 ≤ s < +∞ .

Proof. For s > 0 we obtain

Γρ(s)− sγ+ = s

(
1

ρs
Γ(ρs)− γ+

)
= s

( |Γ(ρs)|
ρs

γ(ρs)− γ+

)
→ 0 (ρ → +∞)

uniformly on any interval of the form [δ, δ−1], 0 < δ < 1, as follows from
Lemma 2.1 (i) and (v). The corresponding statement holds for negative s.
On the other hand, the Γρ being uniformly Lipschitz and Γρ(0) = 0, any
sequence Γρk , k ∈ N, contains a subsequence which converges uniformly on
any compact interval. This proves the lemma. 2

12



As for the convergence of Y ρ, the cases γ+ = γ− and γ+ 6= γ− clearly
have to be distinguished. We start with the first case and may assume that
γ+ = γ− = (1, 0, 0). Let Cε be a circular cone with axis {(t, 0, 0)| t ≥ 0},
vertex at the origin, and opening angle ε > 0. Since γ+ = γ− ∈ Cε we
may choose R = R(ε) > 0 such that Γ ⊂ (−R, 0, 0) + Cε. By the convex
hull property of minimal surfaces the approximating compact surfaces XR of
section 2 and hence the limit surfaces X must be contained in (−R, 0, 0)+Cε.
It follows that

Y ρ(H) ⊂ (−R/ρ, 0, 0) + Cε .

Since ε > 0 is arbitrary, we see that the surfaces Y ρ converge to the half line
{(t, 0, 0)| t ≥ 0} and there is no limit surface. It remains to consider the case
that γ+ 6= γ−. Using the notation of section 2 we have

Ω(Y ρ, R) = (ϕρ)−1(Ω(X, ρR))

and we therefore obtain from Lemma 2.7 and the conformal invariance of
Dirichlet’s energy the estimate

(3.1) E(Y ρ, Ω(Y ρ, R) ≤

1

2
α +

∫

Γ

√
1− 〈γ(s), Γ′(s)〉2
max(ρR, |Γ(s)| ds


 R2 ,

so that we have an energy bound uniformly for ρ ≥ 1; actually, the integral
over Γ in (3.1) tends to 0 if ρ → +∞. Since moreover the hypotheses (1.2) for
the boundary curve Γ hold in a uniform way for the curves Γρ, ρ ≥ 1 (for (1.2)
(i) the assumption that γ+ 6= γ− enters), the analysis of section 2 applies and
we may conclude that any sequence Y ρk , k ∈ N, where ρk → +∞ contains a
subsequence which converges uniformly on any compact subdomain of H̄ and
locally smoothly in the interior of H to a proper limit map Y ∈ C0(H̄, R3)∩
C∞(H,R3), Y is conformal minimal immersion, and Y |∂H parametrizes Γ∞.
Moreover, passing with ρ →∞ in (3.1) we see that any such Y satisfies the
estimate

(3.2) E(Y, Ω(Y,R)) ≤ 1

2
α R2 .

We would like to argue that Y (H) is a planar sector of opening angle α. In
case α = π the boundary curve Γ∞ is a full straight line and we can extend
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Y by reflection across Γ∞ to obtain a properly immersed minimal surface M
which by (3.2) satisfies

(3.3) A(M ∩BR) ≤ πR2, R > 0 .

It follows from the monotonicity formula that we have equality in (3.3), from
what it is not difficult to see that M must be a plane. We are thus left with
the case that γ− and γ+ are linearly independent. We may clearly assume
that

γ− = (cos α/2, − sin α/2, 0), γ+ = (cos α/2, sin α/2, 0)

where, as before, α = ^(γ−, γ+) ∈ (0, π). For ε ∈ (0, π− α) let us define the
cone

Cε = {(x1, x2, x3)| x1 ≥ 0, |x2| ≤
(

tan
α + ε

2

)
x1, |x3| ≤

(
tan

ε

2

)
x1} .

Since the ends of the curve Γ are contained in Cε we may choose R > 0
depending on ε so that Γ ⊂ (−R, 0, 0) + Cε. From the convexity of Cε we
may conclude as before that X(H) ⊂ (−R, 0, 0) + Cε and hence Y ρ(H) ⊂
(−R/ρ, 0, 0)+Cε. It follows that any limit map Y satisfies Y (H) ⊂ Cε. Since
ε > 0 is arbitrary small, we infer that Y (H) is a planar sector of opening
angle α. We thus have shown

Theorem 3.2 Let X be a minimal surface with boundary Γ as constructed
in section 2 and let γ− and γ+ be as defined in Lemma 2.1. If γ− 6= γ+ the
surfaces 1

ρ
X tend to a limit surface Y as ρ → 0 which is a convex planar

sector between the half lines determined by γ− and γ+. The convergence is
in the sense of mappings if suitable conformal parametrizations are chosen
for the family 1

ρ
X, ρ > 0. In case γ− = γ+ the surfaces 1

ρ
X shrink to the

half line determined by γ− = γ+.
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